Synthesis of Platinacyclopentadienes *via* Organoboration of *cis*-Platinum(II) Acetylides

Angelika Sebald and Bernd Wrackmeyer*

Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, D-8000 München 2, West Germany

Platinacyclopentadienes are obtained in high yield from the reaction between trialkylboranes R_3B (R = Me, Et, Prⁱ) and *cis*-1,2-bis(diphenylphosphino)ethanediethynylplatinum(1) as the result of two consecutive 1,1-organoboration reactions.

The potential of metallacyclopentadienes in synthesis is well recognized.^{1,2} So far platinacyclopentadienes have been described only with aryl or ester substituents³ or as intermediates⁴ and a convenient synthesis of these compounds is clearly desirable. Bearing in mind the results of the organo-

boration of bis(alkynyl)stannanes^{5,6} and the recent success in the 1,1-organoboration of *trans*-bis(alkynyl)platinum(II) compounds⁷ we have now studied the reaction between *cis*-1,2bis(diphenylphosphino)ethane (dppe)-diethynylplatinum(II) (1) and trialkylboranes (2). The reaction proceeds according

Scheme 1. Reagents and conditions: i, in CH_2Cl_2 or CD_2Cl_2 between -78 and $30 \,^{\circ}C$; the compounds (3a-c) are formed using either a stoicheiometric amount or an excess of R_3B .

Figure 1. 50.3 MHz ¹³C N.m.r. spectrum with ¹H broad band decoupling of (3b) showing the ¹³C resonances of the olefinic carbons. The assignment is based (i) on the relative magnitude of J (¹⁹⁵Pt, ¹³C) (peaks denoted by *) [C (2, 4, 5)], (ii) on the linewidth [C(3)], (iii) on substituent effects of R in (3a-c) [C(2, 4, 5)], and (iv) on the splitting due to J (¹³C, ¹H) in the proton coupled ¹³C n.m.r. spectrum [C(2, 4, 5)].

to Scheme 1 and the platinacyclopentadienes (3) are obtained in quantitative yield. The compounds (3) are yellow to dark yellow solids, which decompose at *ca*. 55---60 °C before melting. They are extremely air- and moisture-sensitive and storage in the dark is advisable.

The proposed mechanism given in Scheme 1 involves the cleavage of the Pt–C= bond leading to an alkynylborate-like intermediate (4). Electrophilic attack of platinum at the C=C bond accompanied by a 1,2-shift of an R group gives compound (5). Complex (5) is not observed (in contrast with the corresponding *trans*-Pt^{II} compound⁷) but a rapid intramolecular reaction leading to another alkynylborate-like intermediate (6) is believed to take place. From (6) a 1,2-shift of the olefinic group gives the title compounds (3).†

The reactions between (1) and (2) are readily monitored by i.r. and ¹H, ¹¹B, ³¹P, and ¹⁹⁵Pt n.m.r. spectroscopy. All n.m.r. data are fully in accord with the structure of (3).[‡] Particu-

be reported in a full paper. ‡ Representative n.m.r. data (Bruker WP 200) for (3), 0.4 M in [²H₂]methylene chloride at 28 °C; chemical shifts for ¹H, ¹¹B, ¹³C, ³¹P, and ¹⁹⁵Pt relative to internal Me₄Si, external Sf₃·OEt₃, external Me₄Si, external 85% H₃PO₄, and Ξ (¹⁹⁵Pt) = 21.4 MHz, respectively. Coupling constants *J*/Hz to ¹⁸⁵Pt are given in parentheses and those to ³¹P in square brackets: (3a): δ (³¹P) 48.9 (1779.8) [6.1], 49.0 p.p.m. (1778.5) [6.1]; δ (¹¹B) 77.1 p.p.m. (br.); δ (¹⁹⁵Pt) - 436.4 p.p.m.; δ (¹³C) 175.1 (853.3) [103.3, 7.6] (C(2), 174.7 (br.) C(3), 162.2 (133.2) [11.2, 3.4] C(4), 149.7 p.p.m. (885.0) [105.6, 8.2] C(5); δ (¹H) 8.30 (108.2) [11.5, 11.5] PtC(2)(H)=, 6.80 (111.0) [11.0, 9.5] PtC(5)(H)=. (3b): δ (³¹P) 48.6 (1777.4) [6.1], 49.1 p.p.m. (1782.0) [6.1]; δ (¹¹B) 77.7 p.p.m. (br.); δ (¹⁹⁵Pt) - 434.9 p.p.m.; δ (¹³C) 166.4 (854.6) [105.0, 8.3] C(2), 175.3 (br.) C(3), 168.8 (132.2) [13.4, 3.8] C(4), 147.2 p.p.m. (898.0) [143.0, 8.9] C(5); δ (¹H) 7.85 (108.2) [11.5, 11.5] PtC(2)(H)=, 6.97 (112.0) [9.9, 9.9] PtC(5)(H)=. (3c): δ (³¹P) 48.0 (1779.8) [6.1], 49.4 p.p.m. (1794.4) [6.1]; δ (¹⁹⁵Pt) - 428.6 p.p.m.; δ (¹³C) 154.2 (851.0) [107.0, 7.6] C(2), 176.2 (br.) C(3), 174.8 (138.5) [14.1, 4.1] C(4), 145.3 p.p.m. (913.2) [107.4, 8.8] C(5). larly noteworthy are the ¹³C resonances of the olefinic carbon atoms of the platinacyclopentadiene ring in the ¹³C n.m.r. spectra [Figure 1].

Recently a convenient synthesis has been developed for $(1)^8$ and procedures for the preparation of (2) are well established.^{9,10} Therefore, this novel and highly efficient route to platinacyclopentadienes (3) shows great promise for further studies of this type of compound.

The support of this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank the Degussa AG for a generous loan of precious metal salts.

Received, 1st August 1983; Com. 1028

References

- 1 H. Hoberg and W. Richter, J. Organomet. Chem., 1980, 195, 355.
- 2 A. Famili, M. F. Farona, and S. Thanedar, J. Chem. Soc., Chem. Commun., 1983, 435.
- 3 N. M. Boag, G. H. M. Dias, M. Green, J. L. Spencer, F. G. A. Stone, and J. Vicente, *J. Chem. Soc.*, *Dalton Trans.*, 1981, 1981.
- 4 K. Moseley and P. Maitlis, J. Chem. Soc., Dalton Trans., 1974, 169.
- 5 L. Killian and B. Wrackmeyer, J. Organomet. Chem., 1977, 132, 213.
- 6 B. Wrackmeyer, Rev. Silicon, Germanium, Tin Lead Compd., 1982, 6, 75.
- 7 A. Sebald and B. Wrackmeyer, J. Chem. Soc., Chem. Commun., 1983, 309.
- 8 A. Sebald and B. Wrackmeyer, Z. Naturforsch., Teil B, 1983, 38, 1156.
- 9 H. C. Brown, G. W. Kramer, A. D. Levy, and M. M. Midland, 'Organic Synthesis via Boranes,' Wiley–Interscience, New York, 1975.
- 10 R. Köster, 'Organoborverbindungen I,' in 'Methoden der Organischen Chemie (Houben-Weyl),' vol. XIII/3a, Georg Thieme Verlag, Stuttgart, 1982.

[†] Alternative reaction pathways are possible depending on the reactivity of the Pt-C= bond in the intermediate complex (5) and on the nature of R₃B. This has been observed for the compounds cis-[Pt(C=C-R)₂(PR'₃)₂], $R \neq H$, where various types of platinum(0)-cyclobutadiene complexes are formed. The results will be reported in a full paper.